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Ranking procedures are widely used in the description of many different types 
of complex systems. Zipf's law is one of the most remarkable frequency-rank 
relationships and has been observed independently in physics, linguistics, biology, 
demography, etc. We show that ranking plays a crucial role in making it possible 
to detect empirical relationships in systems that exist in one realization only, 
even when the statistical ensemble to which the systems belong has a very broad 
probability distribution. Analytical results and numerical simulations are presented 
which clarify the relations between the probability distributions and the behavior 
of expected values for unranked and ranked random variables. This analysis is 
performed, in particular, for the evolutionary model presented in our previous 
papers which leads to Zipf's law and reveals the underlying mechanism of this 
phenomenon in terms of a system with interdependent and interacting components 
as opposed to the "ideal gas" models suggested by previous researchers. The 
ranking procedure applied to this model leads to a new, unexpected phenomenon: 
a characteristic "staircase" behavior of the mean values of the ranked variables 
(ranked occupation numbers). This result is due to the broadness of the probability 
distributions for the occupation numbers and does not follow from the "ideal 
gas" model. Thus, it provides an opportunity, by comparison with empirical data, 
to obtain evidence as to which model relates to reality. 

1. ~ T R O D U C T I O N  

Many empirical relationships observed in complex systems of remark- 
ably different nature imply ranking procedures. Perhaps the most famous one 
is the frequency-rank relationship known in linguistics as Zipf's law (Zipf, 
1935), which was first found by Pareto (1897) in economics and appears 
with astonishing invariability in physics (Nicolis and Tsuda, 1989), biology 
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(Willis, 1922), demography (Auerbach, 1913), social sciences, etc. (see also 
Guiter and Arapov, 1982). In the realm of linguistics, Zipf's law can be 
formulated as follows. If we consider a long text and assign ranks to all 
words that occur in the text in the order of decreasing frequencies, then the 
frequency fr of a word of rank r satisfies the empirical law 

c 
f ,  = 

where c and ",/are constants and ~/ ~- 1. 
" Most theoretical explanations of Zipf's law are based on variational 

principles similar to those in physics, such as "least effort" (Zipf, 1935), 
"minimum cost" (Mandelbrot, 1953), "minimum energy" (Shreider, 1967), 
"equilibrium" (Orlov, 1982), etc. But, in contrast with theoretical physics, 
where variational principles always rest on the underlying dynamics of the 
system, here the explanations have somewhat a teleologic flavor, leaving the 
mechanism of the process concealed. A careful analysis of the assumptions 
made in the variational derivations of Zipf's law shows that they are all based 
on a model of noninteracting particles (interpreted as symbols, words, etc.), 
i.e., on the "ideal gas" model. This approach is expressed in the most explicit 
form by Shreider (1967), who uses a straightforward thermodynamic analogy. 
Namely, he assigns an "energy" to each "sign" and considers a statistical 
ensemble of texts formed from these "signs" comprising the text. This is 
nothing else but an ideal gas of "signs." The same idea in a different form 
is used in a more recent paper by Li (1992). He assumes that symbols 
(including the "blank space") are generated independently with equal proba- 
bilities and shows that this results in (approximately) Zipf's law for the 
frequencies of words in a long text. Independence of symbols means, of 
course, absence of interaction, which brings us again to the ideal gas model. 
Consequently, the author comes to the conclusion that "Zipf's law is not a 
deep law in natural language as one might first have thought." 

We believe the situation is not so trivial. The fact that simple structureless 
systems can display Zipf-law-like distributions does not preclude Zipf's l aw- -  
together with more subtle characteristic features--from reflecting mecha- 
nisms that govern the behavior of complex systems. Models of such behaviors 
should be essentially based on the interaction and interdependence of the 
components of the system and lead to empirically verifiable conclusions 
different from those provided by "ideal gas" models. 

A model of the development of an evolutionary system in the form of 
a nonstationary branching Markov process has been suggested in Schapiro 
(1994), GUnther et al. (1992), and Levitin and Schapiro (1993). Under very 
simple and general assumptions, this model leads to Zipf's law for the 
expected values of species populations in an ecosystem. Apparently this is 
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the first model that provides a theoretical explanation of Zipf's law based 
on a nontrivial interdependence of the system components. 

However, this model calls for a deeper analysis which would go beyond 
the expected values, since here is the point where the ranking procedure comes 
into play. Consider any set of integer-valued random variables. Obviously, the 
distribution of new random variables defined by rank, i.e., the joint distribution 
of the largest values in all realizations (we mean by realizations of the 
statistical ensemble sets of sampled values of all random variables), second 
largest values, etc., up to the smallest values taken from all realizations is 
always different from the distribution of the original random variables. In 
particular, any realization of the ranked variables is, by definition, a monotoni- 
cally decreasing function of the rank, while this is not the case for the original 
random variables. This difference is the more significant the broader the 
distribution of the original random variables. In fact, the distributions of the 
ranked random variables are much narrower than the original distributions, 
and their expected values may obey a law different from that for the original 
random variables. 

As in the case of Zipf's law, the ranking of observed data according to 
their frequency is a widespread empirical procedure. It should be borne in 
mind that, as a result, we obtain just a single realization of the set of ranked 
random variables. Due to the narrowness of the ranked distributions, this 
realization can better represent the entire statistical ensemble of the ranked 
random variables. But at the same time, it can differ drastically from the 
typical representatives of the original statistical ensemble. Overlooking this 
fact may lead to curious artifacts and erroneous conclusions, as shown in 
Section 4. To our knowledge, up to now there has been no general description 
of the effects of ranking. This article provides such a description for a few 
cases which are solved analytically. The results enable us to understand better 
the consequences of ranking. 

Another result which may prove to be important is the stepwise behavior 
of the ranked expected values in the evolutionary model, in contrast to the 
smooth Zipf-law behavior of the expected values for the unranked (original) 
species population numbers. This result is due to the broadness of the distribu- 
tions of the population numbers in our model, as opposed to narrow (binomial 
type) distributions in the "ideal gas" models. Thus, there exists an opportunity, 
by comparison with empirical data, to obtain crucial evidence as to which 
model relates tO reality. 

2. THE EVOLUTIONARY MODEL 

Let us recall the model of the development of an evolutionary system 
presented in Schapiro (1994), Gtinther et al. (1992), and Levitin and Schapiro 
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(1993) in the form of a nonstationary branching Markov process. We will 
formulate the model in the language of ecological dynamics, though it can 
be easily reformulated in terms of demography, linguistics, etc. Henceforth 
we will denote random variables by capital letters and their values by lower- 
case letters. 

Consider an ecosystem which consists of populations Nk(N) [k = 1, 2, 
. . . .  A(N)] of species Sk, where N is the number of steps of the process 
interpreted as time (time is discrete in this model), Nk(N) is a random variable 
which is the population of species Sk at time N, and A(N) is the (random) 
number of different species at the Nth step of the process. The system is 
assumed to evolve according to the following rules: 

1. At the (N + l)th step of the process exactly one individual is created. 
The probability that the newly created individual belongs to the species Sk 

is proportional to the population of that species at time N: 

Pr[Nk(N q- I) = n k -I- l i N k ( N  ) = nk} 

nk (2) 
= Pk.N+l(nk + link) = (1 -- C(N)) 

2. The probability that an individual of a new species SA(N)+t will be 
created at the (N + 1)th step of the process (probability of a successful 
mutation) is 

PrINA(N)+I(N -I- 1) - -  11NA~N)+I(N) = 0} = PA+I,N+I = c(N) (3 )  

It is mathematically convenient to introduce a "fictitious species" So that 
"preexisted" at time N = 1. The birth of an individual of So can be interpreted 
as the "noncreation" of an individual of any "real species" s~. (The linguistic 
interpretation would be generation of the "empty word.") Then the initial 
conditions can be expressed as 

N0(1) = 1, A(1) = 0 (4) 

and for any N 

A(N) A(N) + 1 

N k ( N )  = N ,  = 1 
k=0 k=0 

Formulas (2)-(4) define a branching Markov process. For the purpose 
of this paper we assume c(N) = c = const and c < <  1. For instance, in 
linguistics c rarely reaches 0.1 (Gtinther and Wagner, (1995)) and usually 
does not exceed 0.05. Empirical data support also the assumption c = const, 
at least in the case of news texts analyzed in Sharman (1989). [Note, however, 
that in the case of literature as analyzed in Gtinther and Wagner (1995) more 
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complicated c(N) arises which can be understood as a power-law decrease 
c(N) ar N-q  for N > >  1.] It has been found, for instance (Sharman, 1989), 
that the number of different words grows with almost constant rate when the 
total number of words N in the text changes from 2 • 105 to 10 6. 

As shown in Schapiro (1994), Gtinther et al. (1992), and Levitin and 
Schapiro (1993), this model leads to Zipf's law for the expected values of 
the populations of the species. Namely, if the species are numbered by the 
order of their appearance, then the frequency of species Sk for N > >  1, c 
< <  1 is asymptotically equal to 

c l-cN-c 
A(N)-  k~_~ (5) 

which is Zipf's law with the exponent slightly smaller than 1. 
However, it would be naive to assume that the behavior of the expected 

values is sufficient to explain the empirically observed Zipf-law-like distribu- 
tions. As shown in Giinther et al. (1992), the probability distribution for a 
single species has an asymptotically exponential (geometric) form (N > >  1): 

pkJv(nk) = Pr{Nk(N) = nk} = ak(1 -- at) "k-l (6) 

where 

ak \ - ~ )  (7) 

This is a very broad probability distribution with the standard deviation 
of the same order of magnitude (in terms of N) as the expected value. Since 
any empirically observed set of population values is just one random sampling 
(realization) of the set of random variables {Nk}, these values listed in the 
order of species would exhibit a chaotic nonmonotonic behavior, and one 
would not be able to observe Zipf's law at all! Indeed, looking at Fig. 1 (gray 
line), it is impossible to recognize Zipf's law in the chaotically fluctuating 
population values. However, after ranking the same population values in 
decreasing order, we obtain a much smoother monotonic curve (Fig. 1, solid 
line) from which Zipf's law can be easily discerned. This phenomenon is 
explained by the. fact that the probability distributions for the new random 
variables )Vr, which are populations of a given rank r, are much narrower 
than those for Nk--the populations of the species. Numerical results demon- 
strafing this effect have been presented in Gtinther et al. (1992) (see also 
Fig. 3 below). Consequently, a single realization can serve as a typical 
representative of the entire statistical ensemble. (Note that different species 
may occupy the same rank in different realizations.) Obviously, the curve 
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Fig. 1. The gray line shows one realization of the process defined by equations (2)-(4), with 
the parameters c = 0.02 and N = 40,000. The x axis is the species number as determined by 
the creation time of this species. The black curve shows the same realization, but now ranked 
according to the nt and plotted against rank. Note the smoothness of this curve. 

for the expected values of the ranked variables is, in general, steeper than 
that for the unranked ones. 

The effect of ranking may depend on both the probability distributions 
of the random variables involved and the behavior of their expected values. 
One can conjecture that the effect is minimal if the probability distributions 
are narrow for the unranked variables from the beginning (in particular, the 
effect vanishes if the random variables are in fact constants: their ranked 
sample values coincide with ranked expected values). However, if the distribu- 
tions are broad [as given by (6)], the ranked expected values may follow a 
law different from that for the unranked variables. 

To our knowledge, the effect of ranking has not been analyzed previously. 
The present paper considers that problem for the special case of  exponential- 
type probability distributions with emphasis on the results that follow from 
the evolutionary model given above. Our goal is to show that the mechanism 
suggested by the model leads indeed to an empirically observable Zipfian 
behavior. However, we consider other cases which seemingly have empirical 
counterparts as well. 

3. P R O B A B I L I T Y  D I S T R I B U T I O N S  F O R R A N K E D  VARIABLES 

Consider an ensemble of N particles (individuals) of A different classes 
(species) with a joint probability distribution of occupation numbers (popula- 
tions) Nk, k = 1, 2 . . . . .  A :  
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Pr{Nl = nl . . . . .  NA = n,4} = p (n l  . . . . .  n,O (nk = O, 1, 2, . . . )  

Let us call n = (nl, n2 . . . . .  hA) the species state vector or the realization 
of  the system of random variables {Nk}.  

Define a new set of  A random variables {Nr} (r = 1, 2 . . . .  , A) in the 
following way. For each realization (nl, n2 . . . . .  nA) reorder the components 
of the state vector in decreasing order, thereby obtaining a rank state vector 
fi = (til, r~2 . . . . .  tiA), where r~l >--- ti2 >--- "'" >-- ~A- The joint probability 
distribution for the new random variables {/Vr} (the rank populations) is 
given by 

Pr{/~ = ti~ . . . . .  /VA = aA} = p(at . . . . .  ~a) 

= ~, p(n ,  . . . . .  nA) (8) 
n 1. . . n A ~ M  

where the summation is taken over all species state vectors n that belong to 
the equivalence class M of the rank state vector fi according to ranking, i.e., 
that produce the same rank state vector ft. Note that only realizations that 
correspond to permutations of unequal components n~ . . . . .  n a contribute to 
the sum (8). For example, when A = 2, we obtain 

P(t i l ,  ti2) = P(t i l ,  //2) + P(r~2, til) -- P( t i l ,  a2)Sal,t~2 (9) 

where ~ij is Kronecker's symbol: ~ j  = 1 if i = j,  ~ j  = 0 otherwise. The 
last term in (9) prevents the species state vector (til, tit) from being counted 
twice in the calculation of probability P(til, til) of the rank state vector (til, til). 

A tedious calculation yields the general formula for the joint probability 
distribution of  the rank populations {/Vr} in terms of joint probabilities of  
the species populations {Nk}: 

= P ( ~  . . . . .  ~A) 

= ~ p('rr(nl) . . . .  , 'rr(nA)) 

X 1 + ~ m[ ~ 8~r(,,i)~(n./+O...~(,,/+,,_t) (10) 
m=2 j =  I 

where {'rr} is the set of  all possible A! permutations of  values nl . . . . .  hA. 
Formula (10) can be proved by induction. 

The random variables Nk in the model of  Section 2 are, strictly speaking, 
not independent. In particular, they obey the equality ~ =  t Ark = N. However, 
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the dependence vanishes for N - A > >  1, A > >  1, which is the case of  
interest to us. We assume henceforth that 

A 

p ( n l  . . . . .  ha) = I-~ p i (n i )  (11) 
i=1 

Moreover, we consider the special case of  a geometric (exponential) 
distribution for each Nk: 

Pr{Nk  = nk} = pk(nk) = (1 -- X k ) ~  k- I  (12) 

where k = 1 . . . . .  A, and nk = 1, 2 . . . . .  
As discussed in Appendix A, the probability distributions of  rank vari- 

ables in this case have the form 

Pr{Nr = n} = f i r (n)  

= ( - 1 )  m-r 1 - xki Xki (13) 
m=r { } i= I 

where {~m} is the set of  all possible (Am) choices of  m elements 
xk~ . . . . .  Xk.  out of  A elements Xl . . . . .  XA. 

The expected value E(Nr) and the variance V(/V~) of the rank variables 
are given by the expressions 

= ( - - I t -  _ 

m~r 

and 

(mrS) [( V(Nr)-'~ ~ ( - -1)  ra-r ~ 1 - -  ~ X k  i Xk i 
m=r {~.Am} i=1 i=l 

(15) 

Formulas (13)-(15) will be the starting point of  our further analysis. 
Before returning to the model of Section 2, we consider a simpler example 
which demonstrates clearly the effect of ranking on the expected values and 
the width of  the probability distributions. 

4. U N I F O R M  J O I N T  P R O B A B I L I T Y  D I S T R I B U T I O N  ON A 
S I M P L E X  

Suppose random variables Nk (k = 1, 2 . . . . .  A) have a uniform distribu- 
tion on a simplex E~=~ Nk = N.  In other words, probabilities of  all state 
vectors (nl, n2 . . . . .  hA) such that E~=l nk = N are equal and given by 
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(AN:) -' p(nl . . . . .  hA) = (16) 

where (~--I) is the total number of different state vectors, i.e., the number of 
ways in which N particles can be distributed among A boxes so that each 
box contains at least one particle. 

The distribution for one component Nk is obtained in the same way: fix 
the number nk of particles in the kth box and count the number of all remaining 
partitions. Hence 

Pr{Nk=nk} = P k ( n k ) = ( N - -  1 2 n k ) / ( N A -  (17) 

For N - A > >  1, A > >  1 it leads to a geometric distribution: 

/ A 
pk(nk) ~ ~I ---- -l 1 ~I (18) 

This is exactly the procedure one uses in statistical mechanics to derive 
the canonical ensemble from a microcanonical one. For the case when the 
energy of a subsystem ("box") is proportional to the number of particles in 
it (ideal gas!), the Gibbs distribution turns into expression (18). 

The asymptotic expressions for the expected values and standard devia- 
tions of ranked populations can be derived by use of (14) and (15) (see 
Appendix B): 

E(~I~) ~- 1 + log(r/A) (19) 
log(1 - A/N) 

~ r  = [ V ( ~ ' r ) P  t2 

~. log[1 - (l lr - I/A) m] - log[1 + (l lr - I/A) m] (20) 
log(1 - A/N) 

It follows from (19) and (20) that the ratio ~YrlE(N,) decreases with 
increase of A as l/log(A) for r < <  A and as 1/4~ for r/A = const. 

This demonstrates the effect of the narrowing of distributions due to the 
ranking. Numerical examples illustrating the rank dependence of the expected 
values and standard deviations are given in Fig. 2, where instead of the 
approximations (19) and (20), numerical summations of the exact expression 
(B2) were used. Figure 3 shows the probability distributions of the unranked, 
(17), and various ranked probability distributions, where again the exact 
formula (B1) is used. 

As shown in Appendix B, formula (19) gives a very rough approximation 
of the values E(blr) which is applicable to the entire curve only if A2/N <-- 2. 
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Fig. 2. (a) Mean values of the ranked system calculated from (30) theoretically (black curve) 
and compared with a numerical simulation of the corresponding system (gray curve). Simulation 
data are from a Markov model (2)-(4) with c(N) = 0 and nk = 1 Vk = 1 . . . . .  A, leading to 
the same probability distribution (18) for all species. Deviations between theory and simulation 
are smaller than the width of the plotted curves. Parameters used are A = 400 and N = 10,000, 
and 1000 systems for the numerical determination of the mean values. (b) As in (a), but now 
for the standard deviations of the ranked system. Deviations are larger than in part (a) due to 
our assumption (11), which is only poorly satisfied forA = 400 species. However, the agreement 
is still satisfactory. 
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Fig. 3. Various ranked probability distributions p,.(n) (black curves), for ranks r = 100, 20, 
and 1 (from left to right), together with pk(n) (gray), which is the same for all species. Equation 
(BI) was used for calculating pr(n); parameters used are A = 400 and N = 10,000. 

When the opposite inequality is valid, the expected values display a remark- 
able "staircase" behavior for larger ranks, such that 

4AN 2 
r ~  -- 4N 2 + A3 (21) 

The length of the steps and the width of the "steep" intervals are given 
by (B9) and (B10). It should be emphasized that this staircase behavior of 
the expected values appears as a result of ranking and stems from the breadth 
of the distribution (18) for the unranked variables. It has nothing to do with 
the steps in single empirical observations caused by the fact that the random 
variables considered take on only integer values. 

Distributions of mean values of the form (19) can be found in empirical 
examples. They stem typically from systems where one has only a very 
limited number of features, e.g., if one considers ranking of letters, ranking 
of DNA triplets (Borodovsky and Gusein-Zade, 1989), or the ranking of 
small numbers appearing in texts [therefore it is sometimes called the "log- 
law of numbers" in Brokes (1982). 

We stress the" fact that in this case the ranking procedure produces a 
structure, even though the original system is completely void of it. Of course, 
there is some minimal structure in the single-species probability distribution, 
but no structure in the mean values. This structure has been generated by 
the ranking procedure itself. As a further example of this we have investigated 
a model where all single-species probability distributions are given by p(n) 
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= 1/N for n = 1 . . . . .  N. This leads to a different behavior; here we found 
E(IVr) = N(A - r + 1)/(A + 1). Again we see that ranking introduces 
structures where there is none in the unranked (original) system. 

5. RANKING IN ZIPF 'S  LAW M O D E L  

We return now to the case of the evolutionary model described in Section 
2. We assume that the original random variables (the population numbers of 
different species) have exponential distributions (6) with unequal parameters 
ak given by (7). Their expected values obey Zipf's law: 

E(Nk) = a~ -l = (22) 

As before, we consider now the set of new random variables {/Vr} which 
are populations of ranks. 

As shown in Appendix C, where we derive an expression for a more 
general case of E(Nk) = fSk -'~, when the exponent in Zipf's law for the species 
population expected values E(Nk) is very close to 1, i.e., when c ~ 0 and 
E(Nk) = A/k ,  the expected values of ranked populations follow the same law 
for r > >  1: 

but, in contrast with expected values for the unranked variables, E(Nr) demon- 
strate a "staircase" behavior (similar to that of  Section 4). More careful 
analysis leads to the conclusion that, in fact, the curve remains smooth up 
to larger ranks. The "steps" become visible if r -> 3A v3 [cf. (C13)]. 

Departing from the model of Section 2, one can consider a situation 
when E(NK) remains large even for values of k close to A. Such a case seems 
to occur empirically, for instance, in the distribution of  populations of cities 
and towns in a country [for a recent example, see Frankhauser (1991)], or 
in the case of texts with very limited vocabulary (e.g., Katsikas and Nicolis, 
1990). The results derived in Appendix C can be used even in this case; 
however, we can get the E(N~) curves in these cases only numerically. 

In such situations one should expect a steep decline of  the rank expected 
values for highest rank r -< A. This decline follows a logarithmic law: 

E(.N~) ~ log(A) (24) 

Calculations performed with the use of expressions (C5) and (C9) 
showed excellent agreement with empirical data; see Figs. 4 and 5. 
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Fig. 4. Comparison between theory and simulation for the "text" case, i.e., small NIA ratio, 
where steps in the E(Nr) curve are expected. Parameters used are N = 6000, A = 1000, and 
~/ = 0.95. Shown are the E(/Vr) curve (black) as determined by equations (C5) and (C9) and 
an ensemble average (gray) of a numerical simulation. The numerical simulation does not use 
the Markov process (2)-(4), but a system where A independent exponential distributions with 
E(N~ = f3k -'t have been generated. 
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Fig. 5. As in Fig. 4, but now for the "town" case, i.e., large NIA ratio, N = 20,000, A = 400, 
and ~/ = 0.95. Plotted is the theoretical E(Nr) curve (black) obtained by equations (C5) and 
(C9), compared to a numerical simulation (gray). The numerical data are obtained as discussed 
in the caption of Fig. 4. 



408 Gtinther, Levitin, Schapiro, and Wagner 

6. SUMMARY OF THE RESULTS 

In this article, we have investigated the effect of ranking procedures on 
probability distributions. We have found that ranking at its best is a way of 
reducing random fluctuations and narrowing broad probability distributions 
in order to get meaningful quantitative measurements in systems which are 
evolving, nonstationary, and exist in one realization only. 

We have seen that in some cases one should be very careful in applying 
ranking to a given system. For instance, the system in Section 4, which lacks 
any structure, assumes a logarithmic dependence of the mean values on 
rank and a "staircase" behavior. An example of such a system is given by 
investigations of DNA triplets (Borodovsky and Gusein-Zade, 1989), where 
some authors (Katsikas and Nicolis, 1990) erroneously recognized Zipf's 
law, which deviates from the empirical results in Borodovsky and Gusein- 
Zade (1989). Because the DNA triplets are very similar to letters of an 
alphabet, not to words of a given text, the "log-law of numbers" is in agreement 
with our expectations for such a system. In general, based on the results 
derived in Section 3, one understands that such a logarithmic distribution of 
means after ranking is obtained when all possible combinations of sequences 
have equal probability. This was shown by Borodovsky and Gusein-Zade 
(1989), and seen also by Brokes (1982), who states, "In fact, I have come 
to regard conformity with this law as a test of homogeneity in social contexts." 

Let us point out that the mean values arise from distributions which are 
given by equation (13) and which are shown to be sharply peaked, so that the 
observation of the logarithmic decrease is made possible. Thus no fundamental 
structure in the unranked means is needed to explain the result of frequencies 
of base sequences of DNA. The same argument applies also to frequencies 
of letters (as opposed to words). 

In systems where one has a fundamental Zipfian structure of the mean 
values, we have shown ranking to be a meaningful procedure. As above, it 
produces sharp distributions out of diffuse ones, in this way amplifying the 
structure which exists in the original system. However, it works best only in 
the class of systems whose typical representative is the ranking of words in 
a given text. It turns out that in this case almost half of the ranks are filled 
with frequencies corresponding to appearances of words only once in the 
whole text! In this case the argumentation leading to equation (23) applies, and 
the Zipfian behavior of the original system is observed in the whole domain. 

In all other cases, whose typical representative is given by the example 
of ranking of towns according to their number of inhabitants, equation (24) 
shows that at high ranks the Zipfian behavior is replaced by a logarithmic 
one, thus leading to a sharp dropoff in the usual log-log plot. Of course, 
this behavior is a consequence of the fact that mean numbers of inhabitants 
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are very large: there is simply not enough room at the end for the ranked 
means of higher ranks to lie on the Zipf curve, because all low ranks are 
shifted somewhat to higher values--the sum of those relatively small devia- 
tions suffices in absolute value to contain so much of the population that 
there is not as much left as would be needed for the amount necessary for 
the Zipf curve at the higher ranks. 

In addition, there are relations among these three classes, especially 
between the log-law of numbers and the pure Zipfian. If the Zipf exponent 
in the original system is varied from one to zero, the logarithmic regime 
grows, finally leading to (for exponent zero) the log-law of numbers. 

7. CONCLUSIONS 

In the case of the Markov model and its extensions (Schapiro, 1994; 
GUnther et aL, 1992, 1993; Levitin and Schapiro, 1993), the ranking procedure 
leads to a sharpening of the original broad distributions, which may serve 
as an example of a meaningful application of ranking. In related work (GUnther 
et al., 1993) we have introduced more general transition probabilities but 
still linear ones, which again lead to Zipf's law, so we have some evidence 
that there is a large set of transition probabilities in the space of all possible 
ones which can generate Zipf's law. 

To sum up, one may suppose that the ubiquitous appearance of Zipf's 
law is based on two (independent) effects: First, the fact that very general 
transition probabilities lead to Zipf's law, a statement which gets additional 
support from the models of Shreider (1967), Mandelbrot (1983), and Li 
(1992), where Markov models of zeroth order were shown to be able to 
generate Zipf's law. This has to be compared to our models (Schapiro, 1994; 
GUnther et al., 1992, 1993; Levitin and Schapiro, 1993), which use first- 
order linear and nonlinear Markov processes for this purpose. Let us reiterate 
that our model is the first one that not only leads to the overall Zipfian 
behavior, but predicts a new, verifiable phenomenon: the deviations from the 
"ideal" Zipf law in the form of the "staircase" behavior of the expected 
values. The second reason why Zipf's law is found so often is probably based 
on the ranking procedure, which makes Zipf structures empirically observable 
because they are robust under its application. 

This robustness has been pointed out already in Mandelbrot (1983). Let 
us note at this point that ranking is not such a far-fetched procedure as might 
seem at first glance. We believe that this procedure is very important, for 
example, in animal and human perception. Note in this context Kohonen 
(1982), where it is shown that even very simple neural nets are able to 
perform a ranking procedure on a local basis, which leads after a number of 
iterations to the global ranking considered in this article. This opens an 
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additional line of thought, which is connected to the fact that the ranking 
procedure used in this article is a global transformation which reaches its 
fixed point in one step. We think that it would be very interesting to consider 
local transformations which act on nearest neighbors only and which need 
several steps to reach the fixed point of a ranked configuration. 

This proposed local ranking procedure is reminiscent of well-known 
examples of ranking hierarchies in animal groups like apes or chickens. 
Exchanges in hierarchy take place on a local basis, not on a global one. The 
example of the animal group may in addition serve for the following analogy: 
restricted to the feature "rank," an animal's observation and social interaction 
has been sharpened to its place in the hierarchy alone, essentially independent 
of the wealth of features that are also present because of the individual 
character of each animal. It is essential for cooperativity in the group that 
any animal recognizes correctly its place in the hierarchy. In addition, this 
recognition leads to a sharpening of an animal's behavior, in that it has only 
to obey a restricted set of rules, the ones which are connected with its actual 
rank in the hierarchy. 

Let us come back to the question of perception. We think that ranking 
gives animals and humans the ability to structure their perceptions, of course 
at the risk of observational artifacts. But this constraint must favor those 
distributions of observables which are not changed essentially by the ranking 
procedure. It is an important result of this work in our view that the empirically 
observed relation for mean values after ranking, the Zipf distribution, is an 
example of a distribution which satisfies this constraint: power-law distribu- 
tions are stable under the procedure of ranking. Therefore one may speculate 
that there is a deeper level underlying these considerations: 

�9 Structures like populations and texts to a high degree evolve in a 
cycle of creation and observation, re-creation and reobservation. 

�9 Features which are favored from the point of view of observation, 
e.g., which are stable under procedures which are natural for, or at 
least constitute, observation, are likely to appear and be amplified 
during the (co)evolution of these structures. 

�9 Zipf structures exactly fulfill the constraint of enhancing the structure 
and identifiability of features, as shown above. 

�9 Thus a Zipf structure may evolve because basic mechanisms of 
observation favor exactly such a structure in an evolving complex 
system. 

Therefore one can conclude that the appearance of Zipf's law is not 
caused by pure accident, but can be understood on a level which considers 
the interplay between laws in complex systems, which, unlike physical laws, 
may be evolving. 
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As pointed out in the example of the hierarchy in animal groups, in 
general one may speak of a coevolution of laws (behavioral ones) and objects 
(animals). We believe that for a further understanding of complex systems 
it will be necessary to take into account this interplay. 

A P P E N D I X  A 

Let us derive the probability distributions for the rank variables Nr (the 
size of the population of rank r; r = 1 . . . . .  A) under the assumption of 
independence (I I). We have 

/~r(n) = Pr{/V, = n} 

= Pr{/~'l > - n  . . . . .  Air-1 ~ n , ! ~ ] r = n , ~ / r + l  < . n  . . . . .  ~[A <--n} 

r-I A-r 
= P r { g ' , - > n  + 1 . . . . .  grr-,-, >--n + 1,1qr-i . . . . .  

i=O j=O 

. . . . .  filr+j = n, A[r§ <-- n - 1 . . . . .  AIA <-- n -- 1} 

r--I A-r r-i-I 
= 2 2 ~ 2 t7 Pr{Nkq >-n + 1} 

i=O j=O {~r-i-ll {~s+~-'~ i+1} q=l 

• Pr{Nks = n} 1-[ Pr{Nk,--< n - 1} (A1) 
s=r-i t=r+j+ l 

where { ~rtm } is the set of all possible choices of m elements from l elements. 
We turn now to the special case (12) of exponential distributions for 

the species populations Nk: 

Then 

P r { N k  = n}  = pk (n )  = (1 -- X k ) ~  - I  (A2) 

Pr{Nk --> n + 1} = ~ (A3) 

PriNk <-- n -- 1} = 1 -- ~ (A4) 

Substituting (A2)-(A4) into (A1), after a series of manipulations, we 
arrive at the expression (13). Formula (13) can also be conveniently proved 
by induction. Note that the rank variables Nr are far from being independent, 
even though we assume the species variables Nk are independent. This can 
be easily discerned from (10). 

Since distribution (13) is nothing but a linear combination of geometric 
distributions, the expressions (14) and (15) for the expected values and the 
variances of variables /~r r c a n  be derived from (13) straightforwardly. 
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APPENDIX B 
Consider the case when all random variables Nk, k = 1, 2 . . . . .  A, have 

the same probability distribution (18). Then the general formula (13) yields 

f i r ( n )  = Pr{ l~ l  r = n} 

= ~ ( _ l ) , , _ r ( m - ~ ) ( A )  
m=r r - (x "("-l) - x'") 

= ~ ( - 1 ) '  A - r ~ (x(,,_O(s+r)- 
( r -  l)! (A - r)! s=0 s s + r  

()I; A! A-r - 
= ~ ( - 1 ) "  A - r Zs+r_l 

(r - 1)! (A - r)! ~=0 s 

_ A! I ;  -l - ( r -  1)! (A - r)! z r - l ( l  - -  z)A-rdZ 

A~ 

( r -  1)! (A - r)! 

X~(s+r)) 

( B ~ , - , ( r , A  - r +  1 ) - B x , ( r , A -  r +  1)) (BI)  

where B,(r, A - r + 1) is Euler's incomplete beta function, and x = (N - 
A )IN. 

Hence, the expected values E(/~/~) are 

A . ~ = I f  E(/Vr) f f - l ( l  Z ) a - r  d z  
(r - 1)! (A - r)! i=o 

= A !  i=~0 ( r - -  I ) ! ( A -  r ) ! .=  B x i ( r ' A -  r +  1) (B2) 

Expression (B2) cannot be reduced exactly to a closed form. However, 
the behavior of  the expected values of  rank populations can be analyzed 
taking into account that the integrand in (B2) has a sharp maximum at z = 
(r  - 1)/(A - 1). The function 

A! 
f ( z )  = z r -  I(1 - z) A-r (B3) 

( r  - 1) !  (A  - r ) !  

can be viewed as a probability density function of  a random variable Z, 
such that 

r r ( A -  r +  1) 
E(Z) - - -  and V(Z) = (B4) 

A + 1 (A + I)2(A + 2 )  

The width of  the distribution (B3) vanishes in the worst case r ~- A /2  

as A- in  with the increase of  A. Thus, for large A, 
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A! 
(r - 1)! (A - r)! 

B 2 ( r , A  - r + 1) 

i r -  1 
if x~ < A---Z-~_ 1 

r - 1  
if xi > a---~_ 1 

(BS) 

It follows that the contribution to E(lqlr) is given almost exclusively by 
the terms in (30) for which 

xi > r -  1 l o g [ ( r -  1)/(A - 1)] 
- -  o r  i > ( B 6 )  
A - 1 log x 

with each term contributing almost exactly one. This leads to the expression 
(19) for the expected values: 

Iog[(r-- I)/(A - l)]/log x log(r /A)  
E(/V~) ~ • 1 ~ 1  + 

i=0 log(1 -- A / N )  

The approximation (20) for the variance V(N~) can be derived from (B 1) 
in a similar way. 

However, the approximation (19) is quite rough: it gives only the 
smoothed outline of the distribution of  the expected values. Indeed, since 
the values x ~ (i = 0, 1, 2 . . . .  ) form a discrete sequence of  points, it follows 
from (B1) and (B5) that E(~lr) should remain constant for all values of r 
such that x/+l < (r - I)/(A - 1) < x" and then experience a sudden jump 
(equal to 1) when (r - 1)/(A - 1) becomes smaller than x '+l. Thus, the 
expected values should display a characteristic "staircase" behavior. This 
"staircase" shape of the curve for E(1Vr) should not be confused with the 
steps observed in any empirical realization due to the discreteness of the 
population numbers. The steps in the expected values curve appear as a result 
of  the ranking procedure, i.e., the transition from {Nk} to {/~'r}, due to the 
fact that the distribution (18) is very broad. 

The length of the ith step of  the "staircase" (counting from right to left) 
is given by (Ar)i = rm~x(i) - rmi.(i), where rm~x(i) and r.~.(i)  are def'med 
as follows: 

rmax-  1 rmax 
- - < x ~ < - -  
A - I  A - 1  

rmi n - -  1 main 
- -  < x,+t < - -  
A - I  A - I  

Thus, the ith jumps occurs at the point 

rmax( i )  = 1 + ~ x / ( A -  1)J 

(B7) 

(B8) 
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The length of the ith step is equal to 

(Ar)i = Lx~(A - 1)J - Lx~+l(A - 1)J (B9) 

In particular, the zeroth step {between ranks rmax(0) = A and rmin(0 ) ---- 
1 + /[(N -- A ) / ( N  - 1)](a - 1)]} has a length (Ar)0 = / ( A  - 1)2/(N - 1).]. 

However, this "second approximation" is also inaccurate, since it ignores 
the fact that the width of the distribution (B3) is finite (and not infinitesimal). 
Due to this fact, the expected values curve will have no abrupt jumps, but 
rather intervals of steep change. The width of such intervals can be estimated 
from (B4) as 

= = + 1)2( A + 2)J ~ [r(A'A- r)] 'cz 
(BlO) 

This "staircase" picture disappears for lower ranks when the length of 
the step given by (B9) becomes approximately equal to the width of the 
interval of growth (B 10). Thus, the steps are observed for ranks such that 

4 A N  2 
r > ( B l l )  

-- 4N 2 + A 3 

Hence, the steps disappear and the entire curve becomes smooth when 

A 2 
- -  <-- 2 (BI2) 
N 

A P P E N D I X  C 

Consider expression (13) for the probability distribution ff~(n) of the 
ranked populations: 

(mr ( y' pan)  = ~ ( - 1 )  z - r  _ 1- -  Xki Xkl , (C1) 
m = r  { } i=1  

In this appendix we will derive approximate formulas for the case of 
the distribution (6), but with more general xk than (7); we use instead 

1 r~ 
X k =  1 - - a k =  1 -- 1 - - - -  (C2) 

E(Nk) 13 

with ~/not necessarily ~-I. Of course, we can specify the parameters ~/and 
13 to match the ones imposed by the Markov model (2)-(4). 

To calculate from (CI) and (C2) the moments of the distributions, 
especially the means and the variances, we have to introduce an approximation 
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to get rid of the sum over choices included above. Multiplying out the product 
in the sum in (C1), we can write down the distribution in the following way: 

p~(n) = F~(n - 1) - Fr(n) (C3) 

Fr(n) = ~ ( - 1 )  m-~ ~ ~,  (C4) 
ra=r  k l < ' " < k m  i = 1  

The expectation value and the second moment can be expressed as 

oo 

E(lqr) = ~ Fr(n) (C5) 

kl,... ,k m i = 1  

where we have defined 

n = 0  

V(IVr) = ~ (2n + 1)F,(n) (C6) 
n = 0  

We can proceed further by approximating the multiple sum in the defini- 
tion of Fr(n) as 

- (A)(~(n))"  (C7) 

�9 (n) = ~ x~k (C8) 
k = l  

Note that while this approximation in itself is an upper bound for the 
sum, it turns out that for the whole expression Fr(n) this is not so, because 
the definition of Fr(n) involves an alternating sum over these terms. 

Inserting this approximation, we arrive at 

F , ( n ) = f ~ ( n ) d ~ A ( A - ~ ) ~ * - ' ( 1 - O  a-" (C9) 

which is just the definition of the incomplete beta function B~(.)(r, A - r + 1). 
We point out that this expression is exact in the case of equal unranked 

mean values, i.e., if E(Nk) = N/A Vk, and leads to results derived in Appen- 
dix B. 

For the special case of the Markov model (2)-(4), in the limit case c 
---) 0, [3 = A, we can find an approximate expression for E(Nr): 

E(l~r) ~ . ~ a  - e x p ( - 1 ) ~  (C10) 
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The exponential factor in (C10) affects the small ranks only, and thus, 
for r > >  1 

[It looks paradoxical that (C10) gives smaller values for small ranks 
than (CI 1). This is an artifact of  our "all-or-nothing" approximation.] 

Expression (CI 1) displays the Zipfian behavior of  the expected values 
of  rank variables in the "smooth" approximation. However,  the floor function 
in (C 11) recalls the "staircase" phenomenon. The length of the ith step now is 

, ) a l  
(Ar); ~ (.4 - 1) i + 1 (C12) 

i(i + 1) 

Taking into account (B10), one can see that the steps appear, in fact, 
only for larger ranks, such that 

r ----- 3A 2/3 (C13) 
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